전기산업기사
전기설비 설계·시공·감리, 전기기기 운전·보수 등의 업무를 수행하는 기술자
문제 목록
문제 1281
코일의 자기 인덕턴스를 측정하는 방법이 아닌 것은?
정답: 휘트스톤 브리지
브리지 회로, 공진법, LCR 미터는 인덕턴스 측정에 사용되지만, 휘트스톤 브리지는 저항 측정용이다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
문제 1282
평등 전계 E 속에서 반지름 a인 유전체 구(εr)의 내부 전계는?
정답: Ein = 3E/(εr + 2)
유전체 구 내부 전계 Ein = 3E/(εr + 2)이다.
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
정답: 2400 V/m
무한장 원통 도체의 전계 E = λ/(2πε0r) 공식을 사용한다. 도체 중심으로부터의 거리 r = 0.05 + 0.1 = 0.15m, λ = 2×10^-8 C/m, ε0 = 8.854×10^-12 F/m를 대입하면 E = 2×10^-8/(2π × 8.854×10^-12 × 0.15) = 2400 V/m이다.
문제 1283
자속밀도 B = 0.4 T인 균일 자계 중에서 면적 0.25 m²인 코일이 매초 20회전할 때, 유도기전력의 최대값은 약 몇 V인가? (코일 권수 = 100)
정답: 1257 V
최대 유도기전력 Emax = NBAω = 100 × 0.4 × 0.25 × 2π × 20 = 1257 V이다.
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
자계 중에서 면적 A인 코일이 각속도 ω로 회전할 때 유도되는 기전력의 최대값은? (자속밀도 B, 권수 N)
자계 중에서 면적 A인 코일이 각속도 ω로 회전할 때 유도되는 기전력의 최대값은? (자속밀도 B, 권수 N)
정답: NBAω
회전 코일의 유도기전력 e = NBAωsinωt이므로 최대값은 NBAω이다.
문제 1284
도파관의 차단 파장 λc = 4cm일 때, 차단 주파수는 약 몇 GHz인가?
정답: 7.5 GHz
차단 주파수 fc = c/λc = 3×10^8 / 0.04 = 7.5 GHz이다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
다음 중 도파관(waveguide)의 차단 주파수에 대한 설명으로 옳은 것은?
다음 중 도파관(waveguide)의 차단 주파수에 대한 설명으로 옳은 것은?
정답: 차단 주파수보다 낮은 주파수는 전파되지 않는다
차단 주파수보다 낮은 주파수의 전자기파는 도파관을 통과할 수 없고 감쇠한다.
문제 1285
자기 에너지 밀도가 전기 에너지 밀도와 같은 조건은?
정답: 전자기파에서
전자기파에서 (1/2)ε0E² = (1/2)μ0H²일 때, 즉 E = η0H일 때 두 에너지 밀도가 같다.
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
자유공간에서 전자기파의 전계 성분이 E = 100 V/m일 때, 자계 성분 H의 크기는 약 몇 A/m인가?
자유공간에서 전자기파의 전계 성분이 E = 100 V/m일 때, 자계 성분 H의 크기는 약 몇 A/m인가?
정답: 0.265 A/m
자유공간의 특성 임피던스 η0 = 377Ω이므로, H = E/η0 = 100/377 ≈ 0.265 A/m이다.
문제 1286
전송선로에서 전압정재파비(VSWR) = 2일 때, 전력 반사율은?
정답: 0.111
VSWR = 2에서 |Γ| = (VSWR-1)/(VSWR+1) = 1/3. 전력 반사율 = |Γ|² = 1/9 = 0.111이다.
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
정답: 2400 V/m
무한장 원통 도체의 전계 E = λ/(2πε0r) 공식을 사용한다. 도체 중심으로부터의 거리 r = 0.05 + 0.1 = 0.15m, λ = 2×10^-8 C/m, ε0 = 8.854×10^-12 F/m를 대입하면 E = 2×10^-8/(2π × 8.854×10^-12 × 0.15) = 2400 V/m이다.
문제 1287
다음 중 벡터 항등식으로 옳지 않은 것은?
정답: ∇×(∇×A) = -∇²A
∇·(∇×A) = 0, ∇×(∇f) = 0, ∇²f = ∇·(∇f)는 맞지만, ∇×(∇×A) = -∇²A가 아니라 ∇(∇·A) - ∇²A이다.
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
정답: 2400 V/m
무한장 원통 도체의 전계 E = λ/(2πε0r) 공식을 사용한다. 도체 중심으로부터의 거리 r = 0.05 + 0.1 = 0.15m, λ = 2×10^-8 C/m, ε0 = 8.854×10^-12 F/m를 대입하면 E = 2×10^-8/(2π × 8.854×10^-12 × 0.15) = 2400 V/m이다.
문제 1288
자성체의 큐리 온도 근처에서 자화율의 온도 의존성은? (큐리-바이스 법칙)
정답: χ ∝ 1/(T - Tc)
큐리-바이스 법칙: χ = C/(T - Tc). 큐리 온도 Tc 근처에서 자화율은 (T - Tc)에 반비례한다.
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
반지름 5cm인 무한장 원통 도체에 선전하밀도 λ = 2×10^-8 C/m가 균일하게 분포되어 있다. 도체 표면으로부터 10cm 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
정답: 2400 V/m
무한장 원통 도체의 전계 E = λ/(2πε0r) 공식을 사용한다. 도체 중심으로부터의 거리 r = 0.05 + 0.1 = 0.15m, λ = 2×10^-8 C/m, ε0 = 8.854×10^-12 F/m를 대입하면 E = 2×10^-8/(2π × 8.854×10^-12 × 0.15) = 2400 V/m이다.
문제 1289
다음 중 전자기 유도 현상의 응용이 아닌 것은?
【보기】
정답: ㄹ
변압기(ㄱ), 발전기(ㄴ), 유도 전동기(ㄷ)는 전자기 유도 응용이지만, 압전 센서(ㄹ)는 압전 효과를 이용한다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
문제 1290
전하 Q가 반지름 a인 구 표면에 균일하게 분포할 때, 구 외부(r > a)의 전위는?
정답: V = kQ/r
구 외부 전위 V = kQ/r (r > a)이다. 점전하와 동일한 형태이다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
점전하 Q가 만드는 전위에 대한 설명 중 옳은 것을 모두 고른 것은?
점전하 Q가 만드는 전위에 대한 설명 중 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄹ
점전하의 전위 V = kQ/r로 거리에 반비례하고(ㄱ 정답), 전하량에 비례한다(ㄴ 정답). 전위는 스칼라량이며(ㄷ 오답), 등전위면은 구면이다(ㄹ 정답).
📋 시험 정보
📚 시험과목
📄 필기시험 과목
🔧 실기시험 과목
📝 검정방법 및 합격기준
📄 필기시험
객관식 4지 택일형, 과목당 20문항(과목당 30분)
합격기준
100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
🔧 실기시험
필답형(2시간)
합격기준
100점을 만점으로 하여 60점이상
🎯 직무정의
전기설비의 시공·검사·운전·보수 등의 실무업무를 수행하는 산업기사
📈 출제경향
- 필기시험의 내용은 고객만족>자료실의 출제기준을 참고바랍니다.- 실기시험은 필답형으로 시행되며 고객만족>자료실의 출제기준을 참고바랍니다.- 전기설비기술기준, 한국전기설비규정 등은 시험일자 기준으로 시험 시행 전 최근 고시된 기준 및 규정으로 수험준비에 임하여야 합니다.
📋 출제기준
전기산업기사 출제기준 입니다. 메뉴상단 고객지원-자료실-출제기준 에서도 보실 수 있습니다.
💬 최신 커뮤니티
아직 커뮤니티 글이 없습니다
📚 최신 학습자료
아직 학습자료가 없습니다
📅 시험 일정
시험일정 정보 없음
현재 이 자격증에 대한 시험일정 정보가 없습니다.
큐넷(Q-NET)에서 최신 정보를 확인해주세요.
📊 통계
📝 필기시험
🔧 실기시험
👥 성별
📈 연도별 추이 (필기시험 기준)
| 구분 | 2024년 | 2023년 | 2022년 |
|---|---|---|---|
| 접수자 | 47,476 | 46,106 | 49,465 |
| 응시자 | 31,584 | 29,955 | 31,121 |
| 합격자 | 6,189 | 5,577 | 6,692 |
📈 합격률 트렌드
📊 응시자 수 트렌드
👥 성별 통계 분포
📚 학습자료
학습자료가 없습니다
첫 번째 학습자료를 업로드해서 다른 수험생들과 함께 공부해보세요!