전기산업기사
전기설비 설계·시공·감리, 전기기기 운전·보수 등의 업무를 수행하는 기술자
문제 목록
문제 1061
진공 중에서 면전하밀도 σ = 10^-8 C/m²로 대전된 무한 평면으로부터 1m 떨어진 점에서의 전계의 세기는 약 몇 V/m인가?
정답: 565 V/m
무한 평면의 전계 E = σ/(2ε0) 공식을 사용한다. σ = 10^-8 C/m², ε0 = 8.854×10^-12 F/m를 대입하면 E = 10^-8/(2 × 8.854×10^-12) = 565 V/m이다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
문제 1062
강자성체의 큐리 온도에 대한 설명으로 옳은 것은?
정답: 강자성체가 상자성체로 변하는 온도
큐리 온도는 강자성체가 상자성체로 변하는 임계 온도이다. 이 온도 이상에서는 열에너지가 자기 모멘트의 정렬을 방해하여 강자성이 사라진다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
문제 1063
상호 인덕턴스 M = 0.1H인 두 코일에서 1차 코일의 전류가 0.2초 동안 10A에서 2A로 변할 때, 2차 코일에 유도되는 평균 기전력의 크기는 몇 V인가?
정답: 4 V
상호유도 기전력 e = -M(ΔI/Δt) 공식을 사용한다. M = 0.1H, ΔI = 2-10 = -8A, Δt = 0.2s를 대입하면 |e| = 0.1 × 8/0.2 = 4 V이다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
문제 1064
평등 자계 중에서 자기 모멘트 m인 자기 쌍극자가 받는 토크의 크기가 최대가 되는 조건은?
정답: 자기 모멘트와 자계가 수직일 때
자기 쌍극자가 받는 토크 τ = m × B = mBsinθ이므로, θ = 90°일 때 토크가 최대가 된다. 즉, 자기 모멘트와 자계가 수직일 때이다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
원형 코일의 자기 모멘트 m = IA에서 A는 무엇을 의미하는가?
원형 코일의 자기 모멘트 m = IA에서 A는 무엇을 의미하는가?
정답: 코일이 둘러싸는 면적
A는 코일이 둘러싸는 면적을 의미한다.
문제 1065
전도전류와 변위전류의 비교에서 올바른 설명을 모두 고른 것은?
【보기】
정답: ㄱ, ㄴ, ㄷ
전도전류는 실제 전하 이동(ㄱ 정답), 변위전류는 ∂D/∂t(ㄴ 정답), 둘 다 자기장 생성 가능(ㄷ 정답), 변위전류는 진공에서도 존재(ㄹ 오답).
📚 추천 학습 문제
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
평행판 커패시터의 극판 면적이 0.5m², 극판 간격이 2mm이고, 극판 사이에 비유전율이 3.5인 유전체가 채워져 있을 때, 이 커패시터의 정전용량은 약 몇 nF인가?
정답: 7.75 nF
평행판 커패시터의 정전용량 C = εrε0A/d 공식을 적용한다. ε0 = 8.854×10^-12 F/m, εr = 3.5, A = 0.5m², d = 0.002m를 대입하면 C = 3.5 × 8.854×10^-12 × 0.5 / 0.002 = 7.75×10^-9 F = 7.75 nF이다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
변위전류에 대한 설명으로 옳은 것은?
변위전류에 대한 설명으로 옳은 것은?
정답: 전속밀도의 시간 변화율로 정의된다
변위전류는 맥스웰이 도입한 개념으로, 전속밀도의 시간 변화율 ∂D/∂t로 정의된다. 실제 전하의 이동은 없지만 자기장을 만들 수 있으며, 커패시터 충방전 시 중요한 역할을 한다.
문제 1066
반지름 a인 원형 도선에 전류 I가 흐를 때, 원의 중심에서 자속밀도의 크기는?
정답: μ0I/(2a)
원형 전류 중심의 자속밀도 B = μ0I/(2a) 공식을 사용한다.
📚 추천 학습 문제
비오-사바르 법칙을 사용하여 계산하기 가장 적합한 문제는?
비오-사바르 법칙을 사용하여 계산하기 가장 적합한 문제는?
정답: 임의 형태 전류 고리의 자계
비오-사바르 법칙은 임의 형태의 전류 분포에 의한 자계를 계산할 때 유용하다. 대칭성이 있으면 암페어 법칙이 더 간단하다.
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
문제 1067
정전 차폐(Electrostatic Shielding)의 원리로 옳은 것은?
정답: 도체 내부의 전계가 0이 된다
정전 차폐는 도체 내부의 전계가 0이 되는 현상을 이용한다. 외부 전계가 가해지면 도체 표면에 전하가 재배치되어 내부 전계를 상쇄한다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
패러데이 케이지(Faraday cage)의 동작 원리는?
패러데이 케이지(Faraday cage)의 동작 원리는?
정답: 도체 내부 전계가 0이 되는 원리
도체 내부의 전계가 0이 되는 정전 차폐 원리를 이용한다. 외부 전자기파가 도체 표면에서 차단된다.
문제 1068
자기 회로에서 기자력, 자속, 자기저항 사이의 관계를 나타내는 법칙은?
정답: F = ΦRm
자기 회로의 옴의 법칙으로 F = ΦRm (기자력 = 자속 × 자기저항)의 관계가 성립한다. 이는 전기회로의 V = IR과 유사하다.
📚 추천 학습 문제
길이 50cm, 권수 2000회인 솔레노이드에 5A의 전류가 흐를 때 내부의 기자력은 몇 AT인가?
길이 50cm, 권수 2000회인 솔레노이드에 5A의 전류가 흐를 때 내부의 기자력은 몇 AT인가?
정답: 10000 AT
기자력 F = NI = 2000 × 5 = 10000 AT이다.
자속밀도 0.6 T인 균일 자계 중에서 면적 0.5m²인 코일이 자계와 평행하게 놓여 있을 때 코일을 통과하는 자속은?
자속밀도 0.6 T인 균일 자계 중에서 면적 0.5m²인 코일이 자계와 평행하게 놓여 있을 때 코일을 통과하는 자속은?
정답: 0.3 Wb
코일면이 자계와 평행하면 자속선과 수직이므로 Φ = BS = 0.6 × 0.5 = 0.3 Wb이다.
비투자율 1000인 자성체로 만든 환상 철심의 자기저항을 10배 감소시키려면 단면적을 몇 배로 해야 하는가?
비투자율 1000인 자성체로 만든 환상 철심의 자기저항을 10배 감소시키려면 단면적을 몇 배로 해야 하는가?
정답: 10배
자기저항 Rm = l/(μS)이므로 Rm은 단면적 S에 반비례한다. 자기저항을 10배 감소시키려면 단면적을 10배 증가시켜야 한다.
문제 1069
다음 표의 전자기 현상과 관련 법칙이 올바르게 연결된 것은?
📊 표 데이터
| 현상 | 관련 법칙 |
|---|---|
| 전하 주위의 전계 | 쿨롱의 법칙 |
| 전류 주위의 자계 | 암페어 법칙 |
| 자속 변화에 의한 유도기전력 | 패러데이 법칙 |
| 유도기전력의 방향 | 렌츠의 법칙 |
정답: 모든 연결이 올바르다
각 전자기 현상과 관련 법칙이 모두 올바르게 연결되어 있다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
문제 1070
무한 솔레노이드 내부와 외부의 자계에 대한 설명으로 옳은 것은?
정답: 내부는 균일한 자계, 외부는 자계가 0이다
이상적인 무한 솔레노이드에서는 내부에만 균일한 자계가 존재하고, 외부의 자계는 0이다. 이는 암페어 법칙으로 증명할 수 있다.
📚 추천 학습 문제
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
자기 인덕턴스에 대한 설명으로 옳은 것을 모두 고른 것은?
보기:
정답: ㄱ, ㄴ, ㄷ
자기 인덕턴스는 항상 양의 값을 가지며(ㄱ 정답), 코일의 권수의 제곱에 비례하고(ㄴ 정답), 자성체의 투자율에 비례한다(ㄷ 정답). 자기 인덕턴스는 주파수와 무관한 값이다(ㄹ 오답).
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
진공 중에서 전하 Q1 = 4×10^-6 C과 Q2 = -3×10^-6 C이 2m 떨어져 있을 때, 두 전하 사이에 작용하는 힘의 크기는 약 몇 N인가?
정답: 0.027 N
쿨롱의 법칙 F = kQ1Q2/r²를 적용한다. k = 9×10^9 N·m²/C², Q1 = 4×10^-6 C, Q2 = 3×10^-6 C, r = 2m를 대입하면 F = 9×10^9 × 4×10^-6 × 3×10^-6 / 4 = 0.027 N이다.
무한 솔레노이드 내부 자계가 균일한 이유는?
무한 솔레노이드 내부 자계가 균일한 이유는?
정답: 암페어 법칙과 대칭성 때문
암페어 법칙과 대칭성에 의해 무한 솔레노이드 내부는 균일한 축방향 자계를 갖는다.
📋 시험 정보
📚 시험과목
📄 필기시험 과목
🔧 실기시험 과목
📝 검정방법 및 합격기준
📄 필기시험
객관식 4지 택일형, 과목당 20문항(과목당 30분)
합격기준
100점을 만점으로 하여 과목당 40점 이상, 전과목 평균 60점이상
🔧 실기시험
필답형(2시간)
합격기준
100점을 만점으로 하여 60점이상
🎯 직무정의
전기설비의 시공·검사·운전·보수 등의 실무업무를 수행하는 산업기사
📈 출제경향
- 필기시험의 내용은 고객만족>자료실의 출제기준을 참고바랍니다.- 실기시험은 필답형으로 시행되며 고객만족>자료실의 출제기준을 참고바랍니다.- 전기설비기술기준, 한국전기설비규정 등은 시험일자 기준으로 시험 시행 전 최근 고시된 기준 및 규정으로 수험준비에 임하여야 합니다.
📋 출제기준
전기산업기사 출제기준 입니다. 메뉴상단 고객지원-자료실-출제기준 에서도 보실 수 있습니다.
💬 최신 커뮤니티
아직 커뮤니티 글이 없습니다
📚 최신 학습자료
아직 학습자료가 없습니다
📅 시험 일정
시험일정 정보 없음
현재 이 자격증에 대한 시험일정 정보가 없습니다.
큐넷(Q-NET)에서 최신 정보를 확인해주세요.
📊 통계
📝 필기시험
🔧 실기시험
👥 성별
📈 연도별 추이 (필기시험 기준)
| 구분 | 2024년 | 2023년 | 2022년 |
|---|---|---|---|
| 접수자 | 47,476 | 46,106 | 49,465 |
| 응시자 | 31,584 | 29,955 | 31,121 |
| 합격자 | 6,189 | 5,577 | 6,692 |
📈 합격률 트렌드
📊 응시자 수 트렌드
👥 성별 통계 분포
📚 학습자료
학습자료가 없습니다
첫 번째 학습자료를 업로드해서 다른 수험생들과 함께 공부해보세요!